Fourth Semester B.E. Degree Examination, July/August 2022 Additional Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Find the rank of a matrix A =by reducing to echelon form. (07 Marks)
 - Use Cayley-Hamilton theorem to find the inverse of a matrix (07 Marks)
 - Solve the following system of equation of Gauss Elimination method:

$$x + y + z = 9$$
$$x - 2y + 3z = 8$$

$$2x + y - z = 3.$$

(06 Marks)

OR

2 Test for consistency and solve

$$5x_1 + x_2 + 3x_3 = 20$$

$$2x_1 + 5x_2 + 2x_3 = 18$$

$$3x_1 + 2x_2 + x_3 = 14.$$

(07 Marks)

Find all the Eigenvalues of the matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

(07 Marks)

Find the rank of the matrix

(06 Marks)

Module-2

(07 Marks)

Solve $y'' + 4y' + 13y = \cos 2x$

(07 Marks)

c. Solve
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^3$$

(06 Marks)

OR

Solve by the method of variation of parameters, $y'' - 2y' + y = e^x \cdot \log x$.

(07 Marks)

Solve by the method of undetermined coefficients $(D^2 + 1)y = \sin x$.

(07 Marks)

c. Solve
$$\frac{d^2y}{dx^2} - 4y = 3^x$$

(06 Marks)

Module-3

5 Find the Laplace transform of $cost \times cos2t.cos3t$. (07 Marks)

Find the Laplace transform of e^{3t} sin5t.sin3t. b.

(07 Marks)

Find the Laplace transform of t³ sint.

(06 Marks)

OR

If f(t) is a periodic function of period T > 0, then prove that $L\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_{0}^{\infty} e^{-st} f(t) dt$. 6

(07 Marks)

Find the Laplace transform of $f(t) = E \sin wt$, $0 < t < \pi/w$ having period π/w .

(07 Marks)

cost $0 < t < \pi$

as a unit step function and hence find its Laplace $f(t) = \langle \cos 2t \quad \pi < t < 2\pi \rangle$ cos3t

transform.

(06 Marks)

Find the Laplace of (07 Marks)

Solve y''' + 2y'' - y' - 2y = 0 given y(0) = y'(0) = 0 and y''(0) = 6 by using Laplace (07 Marks) transform.

(06 Marks)

Find $L^{-1}[\cot^{-1}(s/a)]$.

(07 Marks)

Employ Laplace transform to solve the equation $y'' + 5y' + 6y = 5e^{2x}$, y(0) = 2, y'(0) = 1. b. (07 Marks)

Find the inverse Laplace transform of log

(06 Marks)

Module-

9 State and prove Bayes theorem.

(07 Marks)

b. Prove that

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) + P(A \cap B \cap C) - P(A \cap B) - P(B \cap C) - P(C \cap A).$ (07 Marks)

c. A pair of dice is tossed twice. Find the probability of scoring 7 points

i) Once

ii) atlesat once iii) twice.

(06 Marks)

If A and B are two events having P(A) = 1/2, P(B) = 1/3 and $P(A \cap B) = 1/4$ compute 10

i) P(A/B)

ii) P(B/A)

iii) P(A/B).

- Three machines A, B and C produce respectively 60%, 30%, 10% of the total number of items of a factory. The percentage of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine C. (07 Marks)
- c. In a school 25% of the students failed in first language, 15% of the students failed in second language and 10% of the students failed in both. If a student is selected at random find the probability that.
 - He failed in first language if he had failed in the second language. i)
 - He failed in second language if he had failed in the first language. ii)

He failed in either of the two languages.

(06 Marks)